Refine your search:     
Report No.
 - 
Search Results: Records 1-7 displayed on this page of 7
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Neutronics design of the low aspect ratio tokamak reactor, VECTOR

Nishitani, Takeo; Yamauchi, Michinori*; Nishio, Satoshi; Wada, Masayuki*

Fusion Engineering and Design, 81(8-14), p.1245 - 1249, 2006/02

 Times Cited Count:13 Percentile:65.77(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Neutron shielding and blanket neutronics study on low aspect ratio tokamak reactor

Yamauchi, Michinori*; Nishitani, Takeo; Nishio, Satoshi

Denki Gakkai Rombunshi, A, 125(11), p.943 - 946, 2005/11

Considering the geometrical characteristics of tokamak reactors with low aspect ratio, a basic neutronics strategy was derived to construct the inboard structure mainly for neutron shielding and produce enough tritium in the outboard blanket. The designs for optimal inboard shield were surveyed and necessary thickness was estimated to make the neutron flux low enough on the super-conducting magnet. In addition, the outer blanket designs were studied to attain the tritium breeding ratio (TBR) large enough for a self-sustaining fusion reactor on the basis of the advanced fusion reactor materials.

Journal Articles

Steady-state operation of high-beta/low aspect ratio tokamak reactor with bootstrap current

Sengoku, Seio

Purazuma, Kaku Yugo Gakkai-Shi, 80(11), p.940 - 943, 2004/11

Recent spherical tokamak (ST) experiments exhibit many advantageous results including plasma start-up without center solenoid, higher fraction of non-inductive current, formation of internal thermal-barrier as seen on conventional tokamak. In order to reflect these efforts on the design of so called "non-inductive steady-state (SS) operation scenario" and "current ramp-up scenario" of low-aspect reactor, fractions of bootstrap current and neutral-beam-driven current on VECTOR-OPT reactor are estimated. The operation with this SS scenario is shown to be feasible if the normalized beta, $$beta$$n, is raised to grater than 5 typical in ST.

Journal Articles

Confinement of alpha particles in a low aspect ratio tokamak reactor

Tani, Keiji; Tobita, Kenji; Nishio, Satoshi; Iio, Shunji*; Tsutsui, Hiroaki*; Aoki, Takayuki*

Purazuma, Kaku Yugo Gakkai-Shi, 80(11), p.931 - 934, 2004/11

Studies were made on ripple losses of fusion produced alpha particles in a low-aspect-ratio tokamak reactor (VECTOR) by using an orbit-following Monte-Carlo code. Alpha particles are well confined in VECTOR. In a low-aspect-ratio tokamak, the dependence of ripple losses on the number of toroidal-field (TF) coils N is very weak. Assuming a toroidal peaking factor of 2 for the heat load due to loss particles, about 1.5% and 1.0% of TF ripple at the outer edge of plasma might be allowable for the first wall with and without cooling system, respectively. In both cases, the number of TF-coils can be reduced to about 4.

Journal Articles

Geometrical improvements of rotational stabilization of high-$$n$$ ballooning modes in tokamaks

Furukawa, Masaru; Tokuda, Shinji; Wakatani, Masahiro*

Nuclear Fusion, 43(6), p.425 - 429, 2003/06

We have found numerically that damping phases appear in the time evolution of the perturbation energy of high-$$n$$ ballooning modes in the presence of toroidal shear flows. The damping dominates exponential growth which occurs in the bad curvature region, resulting in stabilization of ballooning modes. D-shaping of plasma cross-section, reduction of aspect ratio, and arrangement of X-point at inner side of the torus enhance the stabilization effect of the toroidal flow through this mechanism.

Journal Articles

Geometrical improvements of rotational stabilization of high-$$n$$ ballooning modes in tokamaks

Furukawa, Masaru; Tokuda, Shinji; Wakatani, Masahiro*

Nuclear Fusion, 43(6), p.425 - 429, 2003/06

 Times Cited Count:10 Percentile:31.59(Physics, Fluids & Plasmas)

We have found numerically that damping phases appear in the time evolution of the perturbation energy of high-$$n$$ ballooning modes in the presence of toriodal flow shear, where n is a toroidal mode number. The damping dominates exponential growth which occurs in the bad curvature region, resulting in stabilization of ballooning modes. D-shaping of plasma cross-section, reduction of aspect ratio, and arrangement of an X-point at inner side of the torus enhance the stabilization effect of the toroidal flow shear through this mechanism.

JAEA Reports

Concept study of the Steady State Tokamak Reactor(SSTR)

JAERI-M 91-081, 607 Pages, 1991/06

JAERI-M-91-081.pdf:15.66MB

no abstracts in English

7 (Records 1-7 displayed on this page)
  • 1